Combinatorics of the Free Baxter Algebra

نویسندگان

  • Marcelo Aguiar
  • Walter Moreira
چکیده

We study the free (associative, non-commutative) Baxter algebra on one generator. The first explicit description of this object is due to Ebrahimi-Fard and Guo. We provide an alternative description in terms of a certain class of trees, which form a linear basis for this algebra. We use this to treat other related cases, particularly that in which the Baxter map is required to be quasi-idempotent, in a unified manner. Each case corresponds to a different class of trees. Our main focus is on the underlying combinatorics. In several cases, we provide bijections between our various classes of trees and more familiar combinatorial objects including certain Schröder paths and Motzkin paths. We calculate the dimensions of the homogeneous components of these algebras (with respect to a bidegree related to the number of nodes and the number of angles in the trees) and the corresponding generating series. An important feature is that the combinatorics is captured by the idempotent case; the others are obtained from this case by various binomial transforms. We also relate free Baxter algebras to Loday’s dendriform trialgebras and dialgebras. We show that the free dendriform trialgebra (respectively, dialgebra) on one generator embeds in the free Baxter algebra with a quasi-idempotent map (respectively, with a quasiidempotent map and an idempotent generator). This refines results of Ebrahimi-Fard and Guo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J ul 2 00 4 Properties of Free Baxter Algebras ∗

The study of free Baxter algebras was started by Rota and Cartier thirty years ago. We continue this study by applying two recent constructions of free Baxter algebras. We investigate the basic structure of a free Baxter algebra, and characterize in detail when a free Baxter algebra is a domain or a reduced algebra. We also describe the nilpotent radical of a free Baxter algebra when it is not ...

متن کامل

New Identities in Dendriform Algebras

Dendriform structures arise naturally in algebraic combinatorics (where they allow, for example, the splitting of the shuffle product into two pieces) and through Rota–Baxter algebra structures (the latter appear, among others, in differential systems and in the renormalization process of pQFT). We prove new combinatorial identities in dendriform dialgebras that appear to be strongly related to...

متن کامل

Combinatorics - The Rota Way

Gian-Carlo Rota was one of the most original and colorful mathematicians of the twentieth century. His work on the foundations of combinatorics focused on revealing the algebraic structures that lie behind diverse combinatorial areas and created a new area of algebraic combinatorics. His graduate courses influenced generations of students. Written by two of his former students, this book is bas...

متن کامل

2 4 A pr 2 00 4 Ascending Chain Conditions in Free Baxter Algebras ∗

In this paper we study ascending chain conditions in a free Baxter algebra by making use of explicit constructions of free Baxter algebras that were obtained recently. We investigate ascending chain conditions both for ideals and for Baxter ideals. The free Baxter algebras under consideration include free Baxter algebras on sets and free Baxter algebras on algebras. We also consider complete fr...

متن کامل

ar X iv : m at h / 05 10 26 6 v 3 [ m at h . R A ] 2 1 Fe b 20 06 ON FREE ROTA – BAXTER ALGEBRAS

A Rota–Baxter algebra, also known as a Baxter algebra, is an algebra with a linear operator satisfying a relation, called the Rota–Baxter relation, that generalizes the integration by parts formula. Most of the studies on Rota–Baxter algebras have been for commutative algebras. Free commutative Rota–Baxter algebras were constructed by Rota and Cartier in the 1970s. A later construction was obta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2006